Saturday, June 19, 2010

How is acid rain measured?

Acid rain is measured through pH tests that determine the concentration of hydrogen ions in a liter of fluid. The pH (potential for hydrogen) scale is used to measure acidity or alkalinity. It runs from 0 to 14. Water has a neutral pH of 7. (The greater the concentration of hydrogen ions and the lower the pH number, the more acidic a substance is; the lower the concentration of hydrogen ions and the higher the pH number, the more alkaline—or basic—a substance is.) So a pH greater than 7 indicates an alkaline substance while a pH less than 7 indicates an acidic substance.

It is important to note that a change of only one unit in pH equals a tenfold change in the concentration of hydrogen ions. For example, a solution of pH 3 is 10 times more acidic than a solution of pH 4.

Normal rain and snow measure about pH 5.60. In environmental science, the definition of acid precipitation refers to a pH less than 5.65.




Acid rain can erode structures such as buildings, even if they are made out of stone. (Reproduced by permission of JLM Visuals.)

Measured values of acid rain vary according to geographical area. Eastern Europe and parts of Scandinavia have rain with pH 4.3 to 4.5; rain in the rest of Europe ranges from pH 4.5 to 5.1; rain in the eastern United States and Canada ranges from pH 4.2 to 4.6, and the Mississippi Valley has a range of pH 4.6 to 4.8. The worst North American area, analyzed at pH 4.2, is centered around Lake Erie and Lake Ontario.

When pH levels are drastically upset in soil and water, entire lakes and forests are endangered. Evergreen trees in high elevations are especially vulnerable. Although the acid rain itself does not kill the trees, it makes them more susceptible to disease. Also, high acid levels in soil causes leaching (loss) of other valuable minerals such as calcium, magnesium, and potassium.

Small marine organisms cannot survive in acidic lakes and rivers, and their depletion (reduced numbers) affects the larger fish who usually feed on them, and, ultimately, the entire marine-life food chain. Snow from acid rain is also damaging; snowmelt has been known to cause massive, instant death for many kinds of fish. Some lakes in Scandinavia and New York's Adirondack Mountains are completely devoid of fish life. Acid rain also eats away at buildings and metal structures. From the Acropolis in Greece to Renaissance buildings in Italy, ancient structures are showing signs of corrosion from acid rain. In some industrialized parts of Poland, trains cannot exceed 40 miles (65 kilometers) per hour because the iron railway tracks have been weakened from acidic air pollution.







No comments:

Post a Comment

Post a Comment